Saturday, December 17, 2011

Feresa: The Growling Wolf-Dolphin

The dolphin Feresa attenuata has been bestowed with dreadfully stupid common names. Feresa has been recognized as distinct from Orca since Gray (1871), which makes "Pygmy Killer Whale" both inappropriate and archaic. The alternative "Slender Blackfish" is actively misleading as the superficially similar Pseudorca is more slender (Reeves et al. 2002) and well-lit color photographs in Rossi-Santos et al. (2006) show that the species is actually brown, contra every illustration. I'll be calling the dolphin "Feresa" from here on out (I'm also not too fond of  "attenuata") as my alternate suggestion in the title is a tad verbose.

Feresea... maybe. This species can be distinguished from Pseudorca by having a proportionally larger dorsal fin (2 base lengths away from the blowhole vs. 2.5) and by having a clearly demarcated cape; Peponocephala can be distinguished by having pointed flipper tips, a pointed head when viewed from above, and no white extending around the face (Baird 2010). I think this is the case in the above photo, but I'm not entirely certain. Photo by Gary L. Friedrichsen from WoRMS.
Feresa is one of the most poorly-known toothed whales (McSweeney et al. 2009) and single sightings or strandings are still viewed as deserving publication (Baird 2010). Prior to 1954, the species was known from only two skulls (Reeves et al. 2002), making it extremely poorly-known even compared to beaked whales. What makes this absolutely shocking is that Feresa is not a cryptic species. They are known from the tropics and subtropics worldwide, are easy to detect in visual surveys, do not take extended dives, and (contra Leatherwood et al. 1982) do not avoid vessels (McSweeney et al. 2009). While their surface behavior is normally subdued compared to other dolphins, they have been observed jumping high above the surface and even riding on bow waves (Reeves et al. 2002). It appears that while a deep-water habitat and confusion with Pseudorca and Peponocephala can explain the lack of observations to a degree, the main factor is probably the species being rare (McSweeney et al. 2009).

In 1965 - a little over a decade after the external appearance of the animal became known - Feresa was held in captivity. Pryor (1991) remarked that one individual behaved "more like a wolf than a normal dolphin" would "growl and snap like as canid" and "not hesitate to attack people and other cetaceans". Since when are cetaceans capable of growling? This behavior has led some to presume that Feresa preys on mammals in the wild (Leatherwood et al. 1982) and aggression towards other dolphins has been observed whilst individuals were trapped in tuna seines (Reeves et al. 2002). Considering that both situations occurred in cramped and undoubtedly stressful environments, I think it is completely unfounded to conclude that Feresa is a pugnacious marine mammal-killing macropredator with the available evidence. Stomach contents have included squid and fish (Rodríguez-López and Mignucci- Giannoni 1999; Zerbini & Santos 1997)

Feresa skeleton. From Wikipedia Commons.
The skeleton of Feresa does appear superficially Orca-like, however, it is not a particularly close relative, hence my strong dislike of the "Pygmy Killer Whale". There is some disagreement as to how closely they are related; Slater et al. (2010) places Orcinus (and Orcaella) as the most basal delphinids, however Vilstrup et al. (2011) consider both to be both members of the clade Globicephalinae, but with Orca as the most basal member and Feresa as a derived member and close relative of Peponocephala and Globicephala. This seems like a very interesting group, and perhaps I'll give it some more coverage.


References:

Baird, R. W. (2010). Pygmy Killer Whales (Feresa attenuata) or False Killer Whales (Pseudorca crassidens) Identification of a Group of Small Cetaceans Seen off Ecuador in 2003. Aquatic Mammals 36(3), 326-327. Available.

Gray, J. E. (1871). Supplement to the Catalogue of seals and whales in the British Museum. Available.

Leatherwood, S., Reeves, R. R., Perrin, W. F., & Evans, W. (1982). Whales, dolphins, and porpoises of the eastern north pacific and adjacent arctic waters (NOAA Technical Report NMFA Circular 444). Washington, DC: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Partially Available.

McSweeney, D. J., Baird, R. W., Mahaffy, S. D., Webster, D. L., and Schorr, G. S. (2009). Site fidelity and association patterns of a rare species: Pygmy killer whales (Feresa attenuata) in the main Hawaiian Island. Marine Mammal Science 25(3), 557-572. Available.

Pryor, K. (1991). Mortal remains: Studying dead animals. In: Pryor, K. & Norris, K. S. (eds.) Dolphin Society: Discoveries and Puzzles. University of California Press: Berkeley. Available.

Reeves, R. R., Stewart, B. S., Clapham, P. J., & Powell, J. A. (2002). National Audubon Society Guide to Marine Mammals of the World. Alfred A. Knopf: New York.

Rodríguez-López, M. A. & Mignucci-Giannoni, A. A. (1999). A stranded pygmy killer whale (Feresa attenuata) in Puerto Rico. Aquatic Mammals 25(2), 119-121. Available.

Rossi-Santos, M., Baracho, C., Neto, E. S., & Marcovaldi, E. (2006). First sightings of the pygmy killer whale, Feresa attenuata, for the Brazilian coast. JMBA2 - Biodiversity Records. Available.

Slater, G. J., Price, S. A., Santini, F., and Alfaro, M. E. (2010). Diversity versus disparity and the radiation of modern cetaceans. Proceedings of the Royal Society B 277(1697), 3097-3104. Available.

Vilstrup, J. T., Ho, S. Y. W., Foote, A. D., Morin, P. A., Kreb, D., Krützen, M., Parra, G. J., Robertson, K. M., de Stephanis, R., Verborgh, P., Willerslev, E., Orlando, L., & Gilbert, M. T. P. (2011). Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae. BMC Evolutionary Biology 11(65). Available.

Zerbini, A. N. & Santos, M. C. O. (1997). First record of the pygmy killer whale Feresa attenuata (Gray, 1874) for the Brazilian coast. Aquatic Mammals 23(2), 105-109. Available.

Thursday, December 15, 2011

Eocetus, "Eocetus", and Friends

Update (January 28, 2014): "Eocetus" wardii is now Basilotritus wardii. More on my new post, The Third King.


I was shocked that Uhen (2010) remarked that Basilosaurus drazindai and Basiloterus hussaini "probably represent protocetids... akin to Eocetus". This would place the whales outside Pelagiceti and imply that the now-questionable basilosaurids were potentially capable of walking on land, despite being enormous. Unfortunately, other mentions of this revised placement give no further details (Uhen 2008, Uhen et al. 2011) and Uhen (2010) further states the placement is "difficult to determine with certainty" due to scarce materials. I suspect the hypothesis will not be officially discussed until further material is found and/or described... which won't stop me from wildly speculating.

Lumbar vertebrae in right lateral view. From left to right: "Eocetus" wardii (from Uhen 1999), Basiloterus hussaini, and Basilosaurus drazindai - note that the latter-most may be an anterior caudal (from Gingerich et al. 1997). For comparison: Basilosaurus isis vertebrae.
In the description of Basilosaurus drazindai, Gingerich et al. (1997) note a number of "primitive retentions" which resemble the morphology of "generalized archaeocetes": long neural spine and arch; broad, almost-horizontally placed, anterior-projecting metapophyses which project beyond the anterior edge of the vertebral centrum; and paired, posterolateral processes of the neural arch. Aside from the last trait (which I can't confirm without a dorsal view), all of these traits are present in "Eocetus" (Uhen 1999). Additionally, "Eocetus" has elongated transverse processes, unlike the condition of Basilosaurus (Uhen 1999); however, B. drazindai has processes with a 15.5 cm long base (they broke off) relative to the 30 cm centrum (Gingerich et al. 1997), and so probably had a similar, albeit slightly less extreme, condition. The only criterion for placing B. drazindai in the genus Basilosaurus was the size and shape of the centrum (Gingerich et al. 1997), and while they are uncannily similar in shape, everything else seems to be pointing towards a relationship with "Eocetus".

Lumbar vertebrae in anterior view. Ditto order.
As for awkward middle-child Basiloterus, it appears to have a centrum which is slightly more elongated than that of "Eocetus", however the neural arch and maybe the neural spine appear to be narrower. The metapophyses are upwardly-angled (Gingerich et al. 1997), less broad, less anterior-projecting, but still appear to extend past the centrum. The posterolateral processes are absent (Gingerich et al. 1997). The base of the transverse process is 9.3 cm long relative to a 19.5-20 cm centra (Gingerich et al. 1997), proportionally similar to Basilosaurus drazindai. The placement of Basiloterus is thus not clear, and perhaps it was a basilosaurid or an even more derived protocetid.

Maiacetus inuus, a basal "protocetid" (Uhen 2011). From Wikipedia Commons.

Protocetidae is a blatantly paraphyletic "family" of extinct cetaceans from Eocene coastal marine deposits with hip and femur morphology indicating amphibious capabilities (most of the time) and no evidence of flukes (Uhen 2010). Uhen (1999) appears to think that "Eocetuswardii had weight-bearing hips, however Uhen (2010) refers to them as "moderately reduced" and regarded the species as possibly non-amphibious. This is perhaps not surprising since Eocetus, "Eocetus", and an unnamed Pisco Formation species are the sister group of Pelagiceti (Uhen et al. 2011). This could make them closer relatives of Dorudon than Maiacetus, and raises the question of how many typical protocetid traits they actually exhibited. Perhaps they were entirely aquatic tail-based swimmers which just happened to have fairly large vestigial legs.

Dorudon atrox. From Wikipedia Commons.
The scare quotes around "Eocetus" hint at a taxonomic misadventure. "E." wardii was assigned to its genus by Uhen (1999) based on comparisons of its skull and vertebrae to Eocetus schweinfurthi; the problem is, the holotype of E. schweinfurthi is an isolated skull and it is not possible to determine whether the vertebrae referred to it actually represent the species (Geisler et al. 2005). There is overlapping skull material (Uhen 1999), but Geisler et al. (2005) apparently regarded it as too incomplete to warrant unambiguous placement in the genus. Somehow, "Eocetus" and Eocetus formed a clade in phylogenetic analyses (Geisler et al. 2005, Uhen et al. 2011), making it probable that future discoveries will confirm their close relationship.

"Eocetus" wardii is clearly related to unnamed Pisco Formation material which exhibits the same distinctive traits (moderate centrum elongation, elongated neural arches and spines and transverse processes, strange pock-marked texture) with the only difference being that the unnamed material is 35% smaller (Uhen et al. 2011). The Egyptian vertebrae dubiously assigned to Eocetus schweinfurthi (figured in Uhen 1999) also seem quite similar (including the pock-marks), and if it is also a member of this clade, it would indicate a sizable trans-oceanic range. This in turn could be taken as evidence of the whales being largely pelagic... of course this is quite speculative.

There of course remains much to be known about these cetaceans, and perhaps future discoveries will be enlightening as to how similar they were to the pelagic cetaceans, as well as the origins of Pelagiceti. I really hope it turns out that a Basilosaurus-sized animal could walk on land.


References:

Geisler, J. H., Sanders, A. E., and Luo, Z-X. (2005). A New Protocetid Whale (Cetacea: Archaeoceti) from the Late Middle Eocene of South Carolina. American Museum Novitates 3480, 1-65. Available.

Gingerich, P. D., Arif, M., Bhatti, M. A., Anwar, M., & Sanders, W. J. (1997). Basilosaurus drazindai and Basiloterus hussaini, new Archaeoceti (Mammalia, Cetacea) from the middle Eocene Drazinda Formation, with a revised interpretation of ages of whale-bearing strata in the Kirthar Group of the Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology, University of Michigan 30 (2), 55-81. Available.

Uhen, M. D., Pyenson, N. D., Devries, T. J., Urbina, M., and Renne, P. R. (2011). New middle Eocene whales from the Pisco Basin of Peru. Journal of Paleontology 85(5), 955-969. doi: http://dx.doi.org/10.1666/10-162.1

Uhen, M. D. (2010). The Origin(s) of Whales. Annual Review of Earth and Planetary Sciences 38, 189–221. Available.

Uhen, M. D. (2008). Basilosaurids. In: Perrin, W. F., Würsig, B., and Thewissen, J. G. M. (eds.) Encyclopedia of Marine Mammals, Second Edition. Elsevier: Burlington, Massachusetts. Available.

Uhen, M. D. (1999). New Species of Protocetid Archaeocete Whale, Eocetus wardii (Mammalia: Cetacea) from the Middle Eocene of North Carolina. Journal of Paleontology 73(3), 512-528.

Weems, R. E., Edwards, L. E., Osborne, J. E., and Alford, A. A. (2011). An occurrence of the protocetid whale "Eocetus" wardii in the Middle Eocene formation of Virginia. Journal of Paleontology 85(2), 271-278. Available.